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Abstract. The pair-cutoff real-time Green function method with the coherent state approach 
is used to investigate the ( 1  + 1)-dimensional b6 field theory. The topological and non- 
topological soliton solutions as well as their elementary excitation spectra at finite tem- 
perature are found. Two critical temperatures, one corresponding to the topological soliton 
disappearance and the other to the symmetry breaking restoration, are given. 

1. Introduction 

Recently considerable interest has been shown in the behaviour of the (1+ 
1)-dimensional and (1 + 3)-dimensional C#J~ field theory at zero temperature and finite 
temperature. This is due to its wide applications in solid state physics and quantum 
field theory (Behera and Khare 1980, Muller and Schiemann 1986, Stevenson 1984, 
1985, Stevenson and Rodit 1986, Barnes and Daniel1 1984). In this paper we focus 
our attention on the soliton solutions and the phase structure of the (1 + 1)-dimensional 

field theory, which may have three real vacua (as can be seen from figure 1) or two 
real vacua and a false vacuum (figure 2). This will give us more information about 
the restoration of the spontaneous symmetry breaking at critical temperature than 44 
field theory or 43+ 44 field theory. Using different methods, for example, the Gaussian 
effective potential approach (Roditi 1986) or the functional diagrammatic method 
(Babu Joseph and Kuriakose 1982), several authors made much effort to discuss the 
behaviour of the $ J ~  field at finite temperature. So far, however, the topological and 

Figure 1. The classical potential of the 46 field at the special case g2 = Am. 
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Figure 2. The effective potential of the b6 field at different temperatures: ( a )  T=O, ( b )  
T =  T,,, ( c )  T ~ , S  r s  T ~ ~ ,  ( d )  T =  T+. 

non-topological soliton solutions as well as the elementary excitation spectra in a +6 

field theory at zero or finite temperature have not been given. 
In a series of previous papers, the method developed by one of the present authors 

and his co-workers had been widely used to investigate many physical systems, such 
as the 44 field theory (Su et al 1983), the 43+44 field theory (Su and Gu 1986), 
U( 1) + 44 field theory, the Mohapatra-Senjanovic model (Su and Bi 1984a, b), the 
equation of state of nuclear matter (Su and Kuo 1987) and the phase transition of 
nuclear matter with Skyrme interactions (Su et al 1987). The construction of coherent 
states through the generalised Bogoliubov transformation and the pair-cutoff real-time 
Green functions play central roles in our method. We use this method to discuss the 
c f ~ ~  field theory in the present paper, referring for the detail of this method to Su er a1 
(1983). 

The organisation of this paper is as follows. I n  § 2 ,  we quantise and renormalise 
the Hamiltonian of the 46 model and find four types of solutions, of which two are 
topological and two are non-topological soliton solutions. In § 3, using the pair-cutoff 
real-time Green functions, we obtain the elementary excitations for all the cases at 
zero temperature. In § 4, we extend our calculations to finite temperature and develop 
two conceptions about critical temperatures, one of them corresponding to the disap- 
pearance of the topological soliton sector and the other to the conventional restoration 
of the spontaneous symmetry breaking. In 8 5, we give a summary and discussion. 

2. Hamiltonian and solutions 

The Lagrangian density of a ( 1  + 1)-dimensional 46 field is 

2=faP4a”4 - f m $ $ 2 + g t 4 4 - i ~ 2 4 6  (2.1) 

V(C#J) = t m i 4 ’  - g:44+fA246 (2.2) 

where mb. gb, A > 0, are bare coupling constants. The corresponding classical potential 
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has two absolute minima under the condition 

g i >  A m b  (2.3) 
and three absolute minima under 

g i =  Amb. (2.4) 

The latter is just the case discussed by Babu Joseph and Kuriakose (1982). Performing 
the canonical quantisation 

with 

[a*k(t) ,  = 6kk' 
wk = ( p 2 +  K 2 ) ' l 2  

and normal ordering procedure 

42= :42: + A 

4 1 ~ = : 4 ~ : + 6 A  :4 ' :+3AB 

c$,= :4,:+ 15A :44:+90A2 :4*:+45A2B 

where 

1 
B = C -  

k wk 
we obtain the following Hamiltonian: 

: H :  = H 2 +  H4+ H ,  

(2.9) 

(2.10) 

(2.11) 

(2.13) 

(2.14) 
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are the renormalised parameters. However, A does not change in this renormalisation. 
The equivalence of the normal ordering procedure and renormalisation was shown by 
Coleman (1975). Our notation and conventions follow those of Su et a1 (1983) and 
Su and G u  (1986) in this paper. 

Performing the generalised Bogoliubov transformation 

a^( k )  =f( k )  + c*( k )  (2.15) 

to construct the coherent state configurations, where f( k )  is a c number which charac- 
terises the coherent state I f )  and c ( k )  is an operator which refers to the quantum 
fluctuation, and  using the same variational procedure as Su er a1 (1983) to determine 
f( k ) ,  we obtain 

where y’ satisfies 

(2.16) 

(2.17) 

In fact, (2.16) describes the classical minima in Euclidean space with renormalised 
parameters. We will discuss its solutions below. The quantum fluctuation c ( k )  will 
be discussed in the next section. 

Equation (2.16) has four types of solution, as follows. 
(a) 

j ( u ) = O  

f ( P )  = o  
(4) = 0 

( : H : ) =  U(a)=O.  

(2.18) 

This is a trivial solution corresponding to a false vacuum if g Z >  Am; but it becomes 
a true vacuum and has the same energy as solution (b)  if g 2 =  Am. 

(b)  

J ’=*  - 
121rA2 

- ( g Z 2 +  
6 lrh 

(2.19) 

(9m‘A2-8g4)g’ (3m2A2-4g4)(4g4-3m2A2)I’2 
( : H : )  = U(b)  = + 

27A4 2 n 4  

These solutions correspond to the spontaneous symmetry breaking vacua in which the 
boson condensation with zero momentum occurs. Here we have neglected two other 
solutions corresponding to the unstable maximum state. Obviously, when g 2  = mA, we 
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get (4) = I t (m/A)”2 and ( : H : )  = 0 from (2.19). The vacuum is threefold degenerate; 
solutions (a) and (b) have the same energy in this condition. 

(c) 

m ermu 
1P2 ?(U)”+ 

(45-g2 e*2mu + (25-m2/ k ) [ l+  (g4 /m4-  A*/m*) 

J Z m  e*mx 
(4)=*{2g2k e r 2 ” ” + m 2 [ 1 + ( g 4 / m 4 - A 2 / m 2 )  e*4mx]}1/2 

mv In ( a + ( a 2  - 4p) ’”  2g2T2 
2 ( ~ ~ ~ - 4 p ) ” ~  a - ( a 2 - 4 p ) ” *  > + m ( a 2 - 4 p )  

(:I+:) = U(c) = (2.20) 

where 

k =  ko+(ko-k;)’” 

a = 2[ko+ ( ko- kt)’ ,2]g2/ m2 P = k i  77=2k. 

k i  = g 4 / m 4 -  A’/m2 < 1 
(2.21) 

To obtain solutions (2.20), we used the method given by Su and Gu (1986) for the 
43+ 44 field, noting that (2.20) are the topological trivial solutions. They correspond 
to the one-dimensional motions from two turning points to the false vacuum. We had 
met these solutions in the 43+ b4 field. 

( d l )  If g * >  Am, we obtain 

(2.22) 

Vn 

( : H : ) =  U(d1) = U ( a ) L + 2  [ ( m 2 p Z - 2 g 2 q 4 + h 2 q h - 2 U ( a ) ) “ *  d p  

where sn(x) is the inverse elliptic function and 

p i  = [2g2+  (4g4 - 3m2A’)”’]/3A2 

(4g’ - ( 4g4 - 3 m 2 A  2 )1 ’2  + g2[48g2 + 24( 4g4 - 3 m *A 2)1’2]1’2} 

6A2 

p2 = (4g‘- (4g4-3m2A’)’’* - g[48g2+24(4g4-3m2A2)1’2]11’2}/6A2. 

Noting that ( 4 ( x +  *CO)) = *4,,, (2.22) are the topological non-trivial solutions. 

(2.23) P I=  
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(d2) If g2 = Am, we obtain 
1 / 2  

y 2 (  U )  = i (E) [ 1 * tanh(mu)]”‘ 

1 / :  

(4 (x ) )  = * (E) [ 1 * tanh(mx)]”’ 

(:I+:)= U(d2) 

(2.24) 

Solutions of types ( d l )  and (d2) are the non-trivial topological kink and antikink 
solitons respectively. The particle can only move in two nearby vacua, namely ( O m )  
or (-m, 0), and since the velocity of the particle in vacuum is zero it cannot move 
to another new vacuum. 

3. The real-time Green function at zero temperature 

as the zero-temperature Green functions, under normal and abnormal pair-cutoff 
approximation and obtain 

(3.2) 

in spectral representation, where 

A& = f i k  - W k .  (3.4) 

E ;  =a; - A;. (3.5) 

The elementary excitation spectrum can be obtained from the poles of GI and G2 

In the uniform condensation phase which corresponds to solutions (b)  of § 2, we obtain 

5[2g2+(4g4-3m2A2)1’2]2 4g2[2g2+(4g4-3m 2 A 2 ) 1 / 2  ] E ;  = p 2 +  m2+ - (3.6) 3 A 2  A 2  

For the special case g2 = Am, (3.6) becomes 

E ;  = p 2  +4m2. (3.7) 
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In the topological trivial soliton case which corresponds to solutions (c) in 0 2, we obtain 

15A2v2 -+ 1 15A2av2 a + ( a 2  - 4P)’” 
E i = p 2 + m 2 +  

m(4P-a‘) L 2 m L ( ( ~ ~ - 4 P ) ” ~  ~ - ( C Y ~ - ~ P ) ’ ’ ~  

- W 2 v  ( a  + (a2 - 4P)”’) 
2mL(a2-4P)’” I n  a - (a2-4P)”2 

L-. Co. (3.8) = p 2 + m  2 

In the topological soliton case which corresponds to the solution (d l ) ,  we obtain 

(3.9) 

Equation (3.9) has two elliptic integrals that can be calculated numerically. However, 
it can be explicitly evaluated for the special case g2 = Am, for which we obtain 

(3.10) 

4. The critical temperature and phase transition 

After replacing the vacuum average by the ensemble average, we can extend our 
investigations to finite temperature. For the detail of this extension we refer to Su er 
a1 (1983) and Su and Gu (1986). Here we write down the main results only. We note 
that the Hamiltonian of the 46 field theory is more complicated than that of the 44 
field theory since it has many three- and five-operator terms. After a little algebra, we 
can rewrite equation (2.16) as 

at finite temperature, where 

M 2 ( P )  = m2-24g2v+180A2v2 

G 2 ( P ) = g 2 -  15A2u 

(4.1) 

(4.4) 

Comparing (2.16) and (4.1), we come to the conclusion that all formulae at zero 
temperature are still valid at finite temperature except the substitutions of M for m 
as well as G for g. This is the essential difference betwen +6  and 44 field theory, the 
latter demanding the substitution of M for m only. 
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Now we are in a position to discuss the critical temperatures and phase transitions. 
Obviously, equation (4.1) exhibits all the phase structures of our system, and the 
effective potential of (4.1) at finite temperature can be written as 

Vp e f f V  ( ) -iM2qj2- - 2  G244+iA246 (4.5) 
where M and G are functions of temperature as given by (4.2) and (4.3) and reduce 
to m and g at zero temperature. We can use this effective potential to discuss the 
phase transition of the cP6 system as below. 

4.1. The critical temperature for topological soliton disappearance 

Noting that the topological solitons exist only in the region G2 3 AM (when G2 < AM, 
two degenerate true vacua will become false (figure 2) and the topological solitons 
will disappear) we find that 

G ~ = A M  (4.6) 
is a critical condition characterising the phase transition of the topological soliton of 
the d6 interaction. In the high-temperature region 

Y =  T/4M+(1/47r)  ln(M/47rT)+ y /47 r+O(M2/T2) .  (4.7) 

T,, = 8(5m2A * - 4g4)l”[g2 - ( 5m2A2 - 4g4)”*]/ 15A3. (4.8) 

Substituting (4.2), (4.3) and (4.7) into (4.6), we obtain the critical temperature 

4.2. The critical temperature for breaking symmetry restoration 

As mentioned above, two false vacua and one true vacuum still exist when T >  T,, 
(figure 2). This means that the non-topological solitons still exist in this case. The 
condition in which two false vacua disappear is 

a 2 V t f f / a 4 2  = M2- 16G24*+  1 5 ~ ~ 4 ~ 3 0  (4.9) 
that is, 

A =  1 2 G 2 - 6 0 A 2 M M Z ~ 0  (4.10) 
while 

A = O  (4.11) 
is the critical condition where two false vacua become two inflection points and the 
non-topological solutions disappear. Substituting (4.2), (4.3) and (4.7) into (4.1 l ) ,  we 
obtain 

4g2 - ( 10m2A * - 8g4)”’) ( 1 5m2A - 12g4) 
15A2 10 Tc, = 

All symmetry breaking will be restored where T >  T,,. 

5. Summary and discussion 

(4.12) 

In summary, we would like to point out the following. 
( i )  Using the pair-cutoff real-time Green function method with the coherent state 

approach, we obtain analytically the topological and non-topological solitons and 
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elementary excitation spectra of a (1 + 1)-dimensional 46 field theory at zero tem- 
perature and finite temperature. Comparing our investigation with previous work we 
find that Babu Joseph er a1 (1982) discuss the special case g2 = Am which has three 
true vacua by a two-loop approximation only while Roditi (1986) tries to extend their 
Gaussian effective potential approach to finite temperature. The soliton solutions, the 
elementary excitation spectra, the phase structure and the critical temperature in the 
general case g 2 >  Am were not given in either of their papers. 

(ii) In 44 field theory we can obtain only kink and antikink topological solitons 
since it has two true vacua. In 43+ 44 field theory, we can obtain a non-topological 
soliton which corresponds to one-dimensional motion from the turning point to the 
false vacuum. We cannot obtain a non-topological soliton in 44 field theory or a 
topological soliton in 43 + 44 field theory. But in 46 field theory, we can simultaneously 
obtain both topological and non-topological solitons in the case g 2  > Am. We can 
therefore say that the r,h6 field theory is more general than d4 or 43 + 44 field theory 
in this sense. If one wishes to use a scalar field to construct a soliton bag (Friedberg 
and Lee 1977a, b, 1978, Goldflam and Wilets 1982, Bi et a1 1986), then the 4'interaction 
may be a better choice than 44 and 43 + 44 interactions. 

(i i i)  We argue that there are two critical temperatures T,, and T,, in the pair-cutoff 
real-time Green function model, one corresponding to the topological soliton disap- 
pearance and the other to the symmetry breaking restoration. This is not surprising 
if one gives more detailed consideration to figure 2. 
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